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Foreword 

This final report  of the Space Tug Automtic Docking Control 

Study was prepared f o r  the k t i o n a l  Aeronautics and Space 
Administration George C. Marshall Space F l ight  Center by 
Inckhetd Missiles & Space C a n p a n y ,  Inc. In  accordance with 
Contract WS8-29747 

!be study effort herein was conducted under the d i rec t ion  of 
National Aeronautics and Space Administration Study Manager, 
&. -10 lL-BinfUrth; Mr. Eaner C. Pack, alternate. 
report ma prep- by the Lockheed Missiles & space campany, 
Inc . , Sunnyvale, by Mr. Jack Wohl, IXSC Study Manager. 
study results were developed during the period From August 

1973, throue July 1974. 

!he - 

The 

!!here are two parts t o  this report: 

(1) Final Technical Report 
(2) LOCDOK User's Manual 

Requests f o r  addi t ional  information should be addressed to: 

I&. Mario H. I&einfimth 
Chief, Dpiamics and Trajectory Analysis Branch, Control Systems Division 
Systems Dynamics Laboratory . .  - Ea 1.5 

Marshall Space Fllgbt Center 
krshall Space plight Center, A l a .  35812 
Telephone ( 2 0 5 )  453-2470 
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Section 1 

INTRODUCTION 

1.1 BACKGROUND 

An important mission of the Space Tug i s  the  recovery of s a t e l l i t e s  a t  
o r  below synchronous o r b i t a l  a l t i tudes for re turn t o  the Space Shuttle. 

The docking operation i s  t o  be  automatic w i t h  the poss ib i l i t y  of TV 

remote control available as a backup. The Tug must be able t o  auto- 
matically dock with high probabili ty on the f irst  attempt. 

i s  intended t o  provide a bas i s  f o r  designing such a system. 

This study 

1 .2  STUDY OBJECTIVES 

( a )  Develop terminal docking control s t ra teg ies  and determine the 
sensor requirements. 

Assess the influence of the docking mechanism design on the type 
and accuracy of sensor data required and the  probabi l i ty  of 
successful docking on the f i r s t  attempt. 

(b )  

( c )  Assess the  effects of a missed docking attempt on the  Tug propellant 
consumption and on the  payload a t t i t ude  control  system. 

( d )  Provide documentation of the resul tant  computer program. This i s  

t o  include a user ' s  manual, decks and/or tapes,  and flow charts 

suf f ic ien t  for: running the  program. A l s o  included w i l l  be test 
cases with the description of inputs and outputs. 

_. 
1.3 AXES CONVENTIONS 

The axes conventions used i n  t h i s  report ,  the  LOCDOK Simulation, and 
t h e  User's Manual are shown in  Figs. 1-1 through 1-4. 
i n  the  brackets of Fig. 1-4, Vehicle Coordinate System, are  the APS engine 

thrus t  numbers. In  the LOCDOK printout the axial engines ( fore-af t )  

The numbers shown 
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have a value of' 1 fo r  forward thrust .  Or! the p lo ts  the ax ia l  thrust  
has the value 9.  Which engines are thrust ing may be derived from the 
following algebraic equations. 

LOCDOK Printout 

Axial engine No. = 1, + th rus t  
- 1, - th rus t  

r 
Lateral  engines No.  = 1 , + z L r u s t ]  + [ zll; -y th rus t ]  

-1,- z th rus t  +y th rus t  

On the 4020 p lo ts  

3 GUID Eng No. = [+/-, t h m s t ]  + 3[-/+, y thrust]  + 9 [+/-, x thrus t  

1.4 VEHICLE CONFIGURATION 

The Baseline Tug Configuration used i n  t h i s  study is shown i n  Fig. 1-5. 

1-5 
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1.5 conv5?sIom To SI 

Inches (in.) 
Feet (ft) 

centinetera (em) 
meters (8)  

Nautical Wler (uml) k l l a m e t e ~ ~  (k.) 
Pounds, farce (lbf) newtons (n) 
hss (slugs) kilo€?== (ke) 
Torque (ft-lbf) meter-ncnrtoas (m-n) 
Moment of Inertia (slug-rt 2 ) 
Pounds, k8s (la,) kilo- (ks) 

2 kilogram-meters ( kg-m2) 

constants 

d e g  0.01745329 

In.* 2.54 
tt+ 0.3048 
a* 1.852 
lb* 4.44822 

14.5939 
f t - lbw 1.35582 

2 slug-ft * 1.35582 
lbm* 0.4532267 

* C O ~ ~ I O I I  mtants fraar HASA SP-7012, Rtf. 14. 
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Cnn+:m.n 3 
U F L L # . L U A A  C 

STANDARD CFaCTERISTICS FOR ANALYSIS 

2.1 INTRODUCTION 

The Standard Characteristics for Analysis is a compilation and specifi- 
cation of the many vehicle and system parameters necessary to simulate 
and analyze Automatic Docking of the Space Tug. 

The characteristics should be considered a living document that will be 
updated, modified, and added to as the vehicle and subsystem parameters 
are more definitized. 

These Characteristics could be used as the specifications for Space 
Tug requirements. 

The values shown in Section 2.2 are used for the preset data in the 
LOCDOK Simulation. If these characteristics are changed the preset data 
should be changed also. 

2-1 
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2.2.1 Wei@t 

kg-m2 ' (slug4t2) 
se,sar.7 43,448 
9 8  5g4* 43# 
7,157.4 5,279 

541.0 cm 1 23.3 (in.) 

Dry Weiet 
Max Retrieval Wt for SaE Tug 
Ryloed Isterfsce 
start DDckilagwt 

Burnout Weight 

Tots1 Rupellants & m e a  

Ignition Weieplt 

kga2 (alug-rt2) 
24,071.2 1 ~ 7 %  
23,751.3 17,518 
6,495.7 4,791 

612.1 cm 241 (in.) 

14-m2 
P i t ch  ( I n )  93,742.8 
Yaw ( IZZ) 93,437.7 
R o l l  (I=) 7,81900 
Tug C.G. 518.2 ca 

2,341.4 
1,164.8 

14,810.5 
669.0 

2,815.9 
23,385 -2 

24,326.5 

( rlug-rt2) 

69,141 
68,914 
5,767 
204 (in.) 

2.2.3 Attitude Control 

*Bustline !hag DefiDitioa Docum& Rev. A, 26 June lW2 tu amended by drta for 
we OLI Spsce Tug Autoratic Docking Control, 12 Decedmr 1973, Bopcr Pack. 
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Attitude CaatrOl hIM 

IT (Tail off) 
(nominal) 

n4ec 

14,234.3 

22.2 

22.2 

n-icc 

1,123.43 

2.22 

2.22 

S t a r t  Ikcklna 
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AZianrth 

Elevation 
Gimbal  Rster Q Acceleration 

Angular Mte (Acq. Aver.) 

Ebx Angular Rete (Tracki-) 
Angular Acceleration 
Acquisition Range 

Acquisition Scan Pattern 
(H probbil l ty  Of 8 C @ S i t i O l l )  

Beaswidth 
Bsndvidth 

Rsnge Rssolutiar 

0.003713 &/em; 0.2128 (dedeec) 

0.001745 1.0 (deg/sec) 

W A  
143.72 km; (77.6) m n ~ H  
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Poritioa Velocity 

2.2.8 Docking wecharrism RcQlti ( 3 4 p g )  

Docking AXIS Miss Mstance 
HS6 

Loag. Velocity 

Lateral Velocity 

Aneular v-its 

2.2.9 e Harinstfaa update (3  -sigum) 

poeitlar, Each Axis 5-89  (3.163 -1 

o to 0.3048 m (1.0 fi) 
- 005235 rad (2  3 deg) 
0.03b8 m/sec (.1 ft/sec) to 
0.3048 m / s e c  (1.0 f t / d e c )  

o to 0.09144 m / s e c  (0.3 ft/sec) 
0 to 0.0017k5 rad/sac (1.0 dcg/sec) 

+ 

*Must be divided by 217,945.9 m (715,045.6 f't) for input to U)CDOK. 
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A li-ture rurve7 vas mde at the beginning of the contract. -€JW24-- 
nicakl Inforprrtioa Center intefiagated the Dcc and NASA data barer,- c&Ssified 
8s w e l l  a4 unclrsrified. In addition, UW's Dialog data bsst vas surveyed. 

The following Descriptors BIB- and in cumbination were used: 

--- - _ _  
- -  _ _  

3p8ccclaft 

3.2 SURVEY .. _ _  
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AUTOMATIC RQmEzvWS Ill SPACE 

Forelm Technology Mv Wright-Pattereon AFB ab10 (14l6W) 
Author: frgostaev, V. P., Iiarrrhenbakh, B. V. 

6105E1 FLD: 22A, 22C (USGRDFi6913) 
5 Dec 68 31 

Edited trans. of mono. Congress of the International Astronautical 
Federation (19th) Hew Yor, 1968. 

Report l l ~ .  FPD-BP-23-13b6-68 

Report n.p., 1968 pl-24 

D. Ka01-k. 

~ I U M  af AtrmMATIc CoIcPRoL IR SPACE (2nd) (SELEmED Kn3SIorJS) 
Forelga Technology Dlv U r i ~ t - p s t t e F s o n  AFB Qlo (14l600) 

14 J\m 68 65p 

Edited machine trans. of Synpo8lum on Autoaatlc Control in Space (2nd) 
Vienna, 4-8 Sep 67 pl-43 

5732B3FLD: 22B us=- 

Report M o o  PTD-m-24-127-68 

3-4 

LOCKHEED MISSILES & SPACE COMPANY 
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Naticmal Ibrolrautlcs aad Space Admlnlstration cfsnnad Spacecraft Center, 
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Section 4 
DOCKING CONTROL STRATEGIES 

4.1 INTRODUCTION 

Docking Control s t ra teg ies  must be formulated f o r  the  seven autonmous 
docking phases shown i n  Table 4-1. 
cmpass the events shown i n  the table,  but  a l so  select ion of a data f i l t e r .  

The s t ra teg ies  not only have t o  en- 

To cmple t e ly  define a l l  the s t ra tegies  would require knowledge of the Tug's 

Avionics Configuration, mission definit ion,  and operational constraints.  
One possible Avionics configuration i s  shown i n  Fig. 4-1. 
configuration has the  equipment needed f o r  autonomous navigation. 

Note tha t  this 

For the  following discussion, refer  t o  Table 4-1. 

4.2 

The f irst  phase f o r  docking begins a f t e r  the rendezvous in jec t ion  burn, which 
should place the  Tug a t  t h e  nominal aim-point. 
aim point i s  discussed i n  Section 5. The posi t ion of the aim-point must 
consider t he  aspect of the  sun, moon, o r  ear th  with respect t o  the f ie ld-of-  

view of the  docking sensor. If a docking sensor i s  selected t h a t  i s  i n  the 

v isua l  o r  infrared spectrum an additional constraint  would be  t o  have the 
payload sun-illuminated. 

Phase 1 - Rendezvous Injection Burn 

Calculation of the  nominal 

It would be advantageous t o  have the Tug perform an autonomous navigation 

update a t  t h i s  time t o  reduce the uncertainty i n  i t s  posi t ion and reduce t h e  
sensor FOV requirements, see Section 5. If the Tug missions include mult iple  

payload servicing o r  deployment, then the navigation update would be required 

if the  Tug's autonamy leve l  i s  I or  11. 
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4.3 Phase 2 - Reorientation 

The Tug's a t t i tude a f t e r  the  in jec t ion  burn w i l l  normally require reorienta- 
t ion  of t h e  T u g  t o  point t h e  center of the sensor 's  search pat tern a t  the 

center of  the uncertainty volume of t he  payload. 

The primary decision f o r  this  phase would be the time a l lo t t ed  f o r  the maneu- 
ver. The longer the reorientat ion time the  less A P S  propellant would be used. 

4.4 Phase 3 - Acquisition of the  Payload 

The primary strategy t o  formulate during t h i s  phase would be i f  the payload 
was not acquired. Several a l ternat ives  are  shown i n  Table 4-1. 

If the payload i s  acquired but  there  i s  a poss ib i l i t y  t h a t  t he  Tug might 
impact the  payload i n  a short  time, o r  the Tug might move out of the acquisi- 
t i on  range of t he  sensor, an immediate evaluation must be made. 
performs a rapid data taking and evaluation a f t e r  lock-on t o  e i the r  stop 
the motion of t h e  Tug o r  reverse i t s  veloci ty  i f  it i s  moving away from the 

payload. 

LOCDOK 

4.5 

Given the  docking axis i n  the  payload o r b i t a l  coordinate system and knowing 
the Tug's s t a t e  vector r e l a t ive  t o  the payload from the  sensor, the Tu@; can 

now compute a gross t ransfer  t o  the  docking axis. 
tha t  t he  Tug's s t a t e  vector i s  now known very accurately as the  payload posi- 
t i o n  i s  knm t o  f 1.852 (1 lhni) th ree  sips. 

Phase 4 - Gross Transfer t o  the Docking Axis 

. 

It i s  in te res t ing  t o  note 

The control s t ra tegy i n  LOCDOK fo r  this  phase checks t o  see that  t h e  Tug's 

t r a j ec to ry  t o  the  docking a x i s  does not v io la te  the required miss d i s t m c e  
threshold (see Fig. 4-2). The t r a j ec to ry  then i s  calculated so  as t o  termi- 
nate the gross transfer beyond the  minimum gross t ransfer  distance specified.  
The t ransfer  distance i s  selected so +,hat the Tug can nul l  a l l  posi t ions and 
veloci ty  errors normal t o  the  docking axis before it reaches the stand-off 
range. 

Tug will reach t h e  a x i s  i n  a maximum specified t h e .  
The average veloci ty  toward the  docking axis  i s  ccanputed so tha t  the 
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During the Tug's t ransfer  t o  the axis the  sensor i s  always pointed toward 
the payload (1) t o  keep the  payload within the FOV of t h e  body mounted sensor 
ac6 (2 )  t~ aut~~atizally a e q i ~ i r c  the dockhg  a i d  on tine payioad a f t e r  t h e  

f i n a l  gross t r ans fe r  burn. 

Mid-course corrections are  periodically made t o  correct  t ra jec tory  errors. 

The f i n a l  gross t ransfer  burn i s  computed, allowing f o r  the long thrust ing 
period, so tha t  t he  docking axis  i s  not crossed. 

docking axis  should be t h a t  specified by mission requirements. 

The veloci ty  along t h e  

The t ransfer  t o  the docking axis  is considered complete i f  the  docking aid 
i s  within the  M)V of the docking sensor. If it i s  not the  Tug would m a k e  an 
addi t ional  f a s t  t ransfer  t o  the axis maneuver. I n  the  event t h a t  the docking 

aid i s  not acquired, ( the  a t t i t ude  of  the payload has d r i f t e d  the docking aid 
out of t he  FOV of  the sensor). A means f o r  acquiring t h e  docking aid must be 

implemented. 
navigate the payload un t i l  t he  a i d  is  acquired. 
have t h i s  capabili ty.  However , a circumnavigation simulation has been devel- 
oped by LMSC and could be  integrated in to  LOCDOK a t  a l a t e r  date. Capabili ty 

f o r  t h i s  addition are provided i n  LOCDOK. 

One method of accomplishing t h i s  would be t o  have the  Tug circum- 
A t  present LOCDOK does not 

It should be understood t h a t  i f  the payload i s  ro ta t ing  rapidly, during any 

phase o f  docking, the  docking attempt must be cumpletely aborted. 

4.6 

The bas ic  guidance s t ra tegy fo r  Phase 5 i s  t o  n u l l  the  posit ion and veloci ty  

e r rors  normal t o  the  docking a x i s  while maintaining the  veloci ty  along the 

ads .  

propellant usage. 
who can se lec t  the exponent, G17 i n  the  input dictionary.  

Phase 5 - Transfer down t h e  Docking AXib 

This portion of the guidance uses an exponential logic  t o  minimize 
The rap id i ty  of convergence i s  controlled by the  operator 
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The f i n a l  b u r n  down t h e  docking axis normally reduces the  Tug's velocity 
t o  t ha t  permitted by the docking mechanism and the  poten t ia l  abort maneuver. 

Note tha t  the  r e t r o  burn has t o  be made f a r  enough from the  Tug so tha t  
th rus te r  impingement does not disturb the  payload. From the  r e t r o  burn 

point on, a l l  forward thrust ing engines must be disabled because of impinge- 
ment. 

4.7 

A t  t he  stand-off point the  Tug t o  payload posi t ion,  velocity,  and a t t i t ude  

i s  evaluated. If t h e  tolerances dictated by the  docking mechanism are  ex- 

ceeded the  Tug should abort the  attempt. The stand-off point select ion i s  

detai led i n  Section 7. 

Phase 6 - Evaluation a t  t he  Stand-off Point 

There should be some provision made t o  inspect t h e  payload docking mechanism 
t o  see tha t  it i s  not obstructed o r  damaged. 

4.8 

During t h i s  phase a l l  th rus te rs  m u s t  be disabled except for  an emergency 
abort capabili ty.  It should be understood tha t  an abort a t  t h i s  t h e  w i l l  

severely d i s t u r b  the  payload and may make fu ture  docking attempt impossible. 

Phase 7 - Coast t o  Latch-Up 
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4.9 DATA PILTERIWG 

4.9.1 Introduction 

As a l l  sensor measurements are noisy, some method of data f i l t e r i n g  must be 

employed to determine t h e  best estimate of the payload s t a t e  vector v i t h  
respect to the Tug. 

This section summarizes known resu l t s  i n  l i nea r i zed  and l inear  estimation 
theory, The classical least squares m a x i m u m  likelihood version of the mn- 
l i n e a r  estimation pmblem is outlined and the sequential  version of the op- 
t i m u m  f i l t e r ing  solution (as derived by Kalman). The Kalman equations have 
the  aaVantage that dyumdc noise I n  the model is eas i ly  handled, b u t  both 

the  least squares version and the Kalman equations can be used with any 
de termini s ti c mode 1 . - 

A six-by-six sequential  Kalman was selected for the Tug data f i l t e r i n g  as 
being t h e  best campmnlse for on-board pmcessing, The Tug has knowledge 
of I ts  accelerations from on-board instrwnentstion and it is assumed tha t  

the payload would not maneuver. 

This data filter has been incorporated i n  the LI>CDOK simulation i n  subroutine 

HEST. For additional details see Reference 12 and 13. 

4.9.2 Notation 

I n  general, lover case letters in the equation notations (i.e., u, v, x, and 

z) denote column vectors while upper case letters (i.e., A, B, F, C, H, and 
E) denote matrices, The components of a matrix A and vector u are desig- 

nated by subscripts as A and u The letter I represents the iden t i ty  13 3' 
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matrix. The superscript prime, as i n  A'  o r  u', will denote the transpose of 

the matrix o r  the transpose of a column vector (which becomes a r o w  vector). 
The product of a column vector and a m w  vector, such 86 XI' is a matrix. 
The symbol E represents the expected value so that E(A) represents the ex- 
pected value of the quantity A. The subscript  -1 as in A'l means the in-  

verse of the matrix A. 

the matrix exists,  although, qui te  often, the inverse can be replaced by a 
pseudo-inverse o r  generalized inverse without changing the r e s u l t s .  

I n  all cases it will be assumed that the inverse of 

A set of equations used to model nonlinear estimation for a deterministic 
system can be w r i t t e n  as shown below where A 56 the number of measurement6, 
z is the 1 X 1 vector representing the actus1 measurements, wk is the 1 X 1 

v e c t o r  representing the uncorrelated noise on tk measurements, x is the mXl 
vector representing the state  of the system, %(x) is an 1 x 1 vector repre- 
senting perfect measurements, and is the I X I covariance matrix of the 

noise 

k 

5 = %<XI + k 

cw Wk = F$ for k = 1,2,...,IV 

It w i l l  be assumed the noise has zem mean and it is uncorrelated from one 
measurement to the next. 

E [w~] = 0 

cov w w - 0  j f k  
[ j  kl 

The best estimate of the s t a t e  5: can be written as shown below, where ?$ is 
the 1 X m matrix of partial derivatives and xo is the i n i t i a l  nominal value 
of the state 

A 

LOCKHEED MISSILES & SPACE COMPANY 

~~ 



The inverse of M is the covarLance of the error i n  the estimate. If the 
model is linear, the mnlinear function \($&) is replaced by its linear 
equivalent fi, xo and the expressions involving eo cancel out as shown below. A 

If there is prior information that the state  x has a value z0 with covariance 
Po, it can be included i n  the above analysis by extending the sum so it in- 
eludes k = 0 and defining zo = Xo, Eo = identity, and Ro = Po. 

- 

For the discrete version of the linear estimation problem, the system to be 
estimsted can be described by the following set of matrix difference equa- 

tions. 
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!he l inea r  measurements obtained from the system are given by another set 

of matrix equations. 

% = %  "k 'k for k = 1 , 2 , , . , , N  

The matrices @ 

'hble 4-4 represent known quant i t ies  which can change f r o m  one measurement 

to the next, 
while the vector z represents kmwn measurements. 

not known exactly, but  are zero mean independent random variables with known 
covariance. 
noise) while the variable w represents random changes i n  the measurements 
(measurement mise) .  
a t  the t i m e  of the kth measurement. 
zero f o r  a l l  t i m e ,  the system is said to be "detenninistic." ThC covariances 
of the zem mean dynamic noise and measurement noise are shown b e l o w :  

( t r ans i t i on  matrix) Tables 4-2 and 4-3 and H (output matrix) 

The vector x represents the estimated state of the system 
The vectors u and w are 

The variable u represents randm changes i n  the state (dynamic 

The subscr ipt  k represents the value of  the quant i t ies  
If the dynamic noise u is  iden t i ca l ly  

E(ujui) = Qk if j = k and zero otherwise 

E(wjwL) F$ if  j = k and zero otherwise 

Most physical systems w i l l  involve nonlinear equations, but  it is assumed the 

above set of l inear  equations can be obtained by l inear iz ing  about some 
nominal values for the State and the measurements. 
cal system is governed by a set  of l i n e a r  (or l inear ized)  d i f f e r e n t i a l  equa- 
t ions  although the measurements w i l l  take place at  discrete t i m e s .  
case, the o r ig ina l  system d i f f e r e n t i a l  equations must be integrated to obtain 
the required difference equation r e l a t i n g  the change i n  state from one 
measurement to the next, Conversely, under ce r t a in  conditions, in the l i m i t -  
ing case as time between wasurements goes to zero, the d i sc re t e  system w i l l  

approach a continuous system. 

It may be that the physi- 

I n  that 
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TABLE 4-2 
PARTIAIS OF POSITION AND VEIDCITY AT A LATER TIME WITH RESPECT To 

POSITION AND VELDCITY AT AN EARLIER TIME. 0 (TRANSITION MATRIX) 
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r 

1.0 -6 Sin Wt+6 W t  

0.0 1.0 

0.0 0.0 

0.0 -6W Cos Wt+6w 

0.0 3 W  Sin W t  

0.0 0.0 
- 

TABU 4-3 
TRANSITION MATRIX 

0.0 

0.0 

1.0 

0.0 

0.0 

0.0 

4 Sin w t - 3  
i7 

2 cos Wt-2 
w’ i j  

0.0 

1.0 

-2 Sin W t  

0.0 

-2 cos wt+2 - 
W 

1 S i n  W t  v 
0.0 

2 Sin W t  

1.0 

0.0 
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TABLE 4-4 
MATRIX OF PARTIAL MEAS- WITH RESPECT TO THE ORBITAL FRAME 

IH1 = 

a s / a c r  1 

[HI  = 1 cos El/S 

lo 

s = r a n g c  

Rad = M a l  position difference 

IT = In-track position difference 

El = Elevation angle 

Az = Azimuth angle 
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The optimum estimate w i l l  be the l i nea r  estimate which minimizes the mean 
square e m r .  Calculating the estimate requires knowing the  mean and co- 
variance of al l  the random variables of interest ,  but  no higher moments. 
If a l l  the random variables have a normal probabi l i ty  dis t r ibut ion,  the 

estimate w i l l  be t he  conditional mean of the state given the measurements. 
Sometimes the estimate is also cal led the  Maximum Likelihood estimate be- 

cause it maximizes the conditional probabi l i ty  distribution. 

A Let  x denote the optimum estimate of the state  x given a l l  the measure- 
ments up to If j is greater than or equal to k, it is called f i l t e r i n g  
and prediction. If j is less than k, it is called smoothing. The error i n  
the optimum estimate is the difference between the actual value of the state 
and the estimate. 

3 /k 3 

The covariance matrix of the error, P k/J, is defined: 

The sequential  version of 
Kalman, can be w r i t t e n  as 
filter. 

h A 

xk/k %/k-1 

the optimum f i l t e r i n g  solution, as derived by 
shown below where \ is the gain on the Kalmau 

A 

%l/k = k+l  %/k 

The covariance matrix P can also be calculated sequentially: 

The init ial  

'k/k 

'k+l/k = @ k+l 'k/k 

(I - Bk %) 'k/k-l 

i+l + 'IC 

conditions for the f i l t e r i n g  m l u t i o n  are based on the a priori  - 
information, which I s  that the  state variable x1 ha8 a kmwn mean, Go, and 
covariance Po. 

0 
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- 
For computational reasons, it is necessary that the  matrix Po be non-singulm. 
I f  the actual a p r i o r i  inforatation is not su f f i c i en t  to m a k e  h, non-singular, 
usually it can be modified empirically, by trial and error, to make it nee- 

s ingular  vi thout  having a substantial  effect on later calculations. 

An a l t e rna t ive  sequential version of the optimum f i l t e r i n g  solution sakes 

use of two relations:  

.- 

-1 A -1 
*k/k %/k 'k/k-l %/k-l + % 5' 'k 

These relations arise natural ly  when using the classical maximum likelihood 
derivation, The first r e l a t ion  can be proved by multiplying P$ by Pklk t,? 

g e t  the ident i ty;  the second, by showing that 

Bk = 'k/k % 5;' 
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Section 5 
DOCKING SENSOR R E Q W  

5.1 INTRODUCTION -. 

The Rxking  Sensor is the key piere  of hardware for Autonomous Docking. The 

following requimments can be modified by tmde-offs with other  parameters 
both in t e rna l  and external  to the sensor. 
be a judicious mupmmise of  a l l  t h e  requirements in order to optimize the 

The final requirements should 

total system, 

5.2 ACQUISITION FUUVGE 

The sensor sha l l  have a 0.99 probability of acquiring a passive cooperative 
payload a t  a minimum range of (7'7.6 ma) or  143.72 he 

This range is  based on the 3-sigma guidance accmcy and paylaad uncertainty 
as specified i n  Section 2. 
ing  within the acquis i t ion range of the sensor and the boresight of the 
sensor l o  pointed a t  the  center of the search volume. 

It assumes t h a t  the tug reorients  p r ior  to enter-  

The nominal a i m  po in t  for t h e  rendezvous burn is computed by: 

where: 
PU = 

GAPl = 

GAVl = 

SFr = 

m =  
DA = 

3 Payload posi t ion uncertainty, (rrm)km 

3 Guidance posi t ion accuracy, (w)km 

3 
Search Fmme Time, see 

Data Taking In t ewa l ,  see 
Deacceleration %me, sec 

Guidance veloci ty  accuracy of CAP, ( f t / sec)  ; 6076 km/sec 
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This Aim Point w i l l  insure that  there cannot be an impact w i t h  the payload 

no matter what the guidance dispersions are perpendicular to GAPl or with 

3 - s i p  dispersions i n  p 8 Y l O a d  position, GAP o r  GAV. 

motion has been  neglected as i ts  e f f e c t  is  second order. 

The re l a t ive  o r b i t a l  

The t i m e  needed to cancel the guidance veloci ty  error to aver t  impact is: 

Deecceleration T i m e  (DA, SEC) = (CAV)~ M n o  
where : 

M = mass of vehicle (slugs), kg 

T = Thrus t  ( lbf) ,  n 

The acquisition range (ACQ) then is: 

Thus for 100 sensor measurements, a search frame t i m e  of 1.41 sec., a vehicle 
mass of 14810.5 kg (1014.84 slugs) and a retro th rus t  of 44.8 n (100 1.b) 
along an axis which has the maximum GAP, the acquisit ion range is 143.72 km 

(77.6 m). 

5.3 FIELD OF VIEW 

Fig. 5-1 is a graph of the sensor's field of v i e w  requirement, with and with- 

ou t  a guidance update after the rendezvous burn, 
rendezvous is 250.2 m (821 f t , )  or .e Ian (-135 ma). This distance and the 

payload uncertainty i n  the r e U t i v e  posi t ion of the tug are the drivers  for 
FOV requirements. If it i s  desired to guarantee that the payload is  within 
the Fotr then the FOV required i s  21-57 x t1.57 rad (two x +,90°). 
guidance update the FOV requirements decrease slowly as the I n i t i a l  rsw 
increases. 
rapidly. 

+.96 - x t.96 rad (t55' x t 55O)  (assuming zero dispersions perpendicular to 

The closest range after 

.-____ - 

With no 

The FDV requirements with a guidance update decreases much more 
A 99$ probabi l i ty  that the payload w i l l  be within the M>v requires 
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the  payload - A i m  Point axis). 
-_ - 

With horizon sensors or s t a r  trerckers to provide the i n i t i a l  altitude refer- 
ence and a requirement of 0.14 torquing accuracy f o r  t h e  maneuver, a l t i t u d e  
errors w i l l  not appreciably increase the FW requirements. 

- _ -  -- -_ 

5.4 SEARCH FRAME TIME (SFr) - 

The prinary requirement for SFT is to achieve lock-on before t h e  payload can 

d r i f t  ou t  of the field of view. 
pendicular to the l i n e  of sight again neglecting o r b i t a l  dynamics: 

If w e  RSS the guidance velocity error per- 

Ll = 6.04 m/sec (19.8 f t / sec)  

Requiring the addition to the F'QV a t  closest range be no more than lo$ due 
to SFJ so as to be negligible when RSS With  the sensor then: 

-- - 

I- 

SEP = initial range x tan (,I FOV) .. 

sfi = (821) x (.1%38) = 8.06 eec 
19.8 

- -. .. 5.5 RANGE, ELMATION AWD AZIMUTH ACCURACY 

-~ - 
P r e l i m i n a r y  simulations show that the followlng 3 - s i p  sccuracics would 
allow successful latch-up. - 

- .  

Range: .I$ of range 

Angle: OsooOs725 rad (.OS0) 
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5.6 BIAS AND RESOLUTION 

B i a s  is the most d i f f i c u l t  sensor error to accoaanodate. 

can be measured optically and by other methods. 
should be compensated for. 
resolution and 3 - s i p  biases: 

Many sensor biases 
The known systematic error 

Preliminary simulations a l l o w  the following 

Resolution: b n g e  .Og m, (0.3 f t )  
Angle ,0436 m md (0.0025 deg. ) 

Bias  : Range ,0046 m (0.015 f t )  
Angle ,0034 rad (0.0002 deg. ) 

5.7 ACQUISITION AND TRACKING RATES 

The following minimum rates are suggested: 

Acquisition: 0.0279 rad/sec (1. @/see) 
Tracking: 0.0506 rad/sec (2.9"/sec. ) 

Fig. 5-2 I s  the encounter relatf&Ips. 
5.8 W S S  OF IDCK-ON 

If for any reason t h e  sensor loses lock-on for three consecutive measure- 
ments, the semor should start an expanding squares or  spiral search about 
the last known position. 
after the loss of the  payload then a loss of payload signal should be pro- 
vided to abort the docking during a cr i t ical  phase and the sensor should 
then i n i t i a t e  the f u l l  M)v raster scan. 

If the payload is not reacquired within one second 

5 . 9 DISSRIMIRATION 

The sensor should be able b discriminate against  objects other than the pay- 
load i n  the FOV. Space debris 

could be eliminated to some extent by range gating and relative veloci ty  

These would be primarily the star background. 
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discrimination. There should be an indicator  i f  the* is  nore than  one ob- 

j e c t  i n  the N V  after discrimination. 

S 
The sensor should be able to operate if  the sun, moon, o r  earth l tmL,s  are 
more than 0.08725 rad (5 ' )  f r o m  the FOV. 
the  sensor i f  the sun, moon, o r  earth appear i n  the Mw and the sersor 
should recover normal operation v l th in  10 sec. 

There cannot be any Wage to  

5.10 DATA F R E Q ~ C Y  RATE 

The data frequency rate is  usually driven by other sensor requirements s m h  

as the pulse repe t i t ion  frequency, data processing method, acquisiticr, sr3 

tracking rate requirenents, e tc ,  Preliminary simulation shows that a m i t ? ? -  

mum of 16 range, azimuth, and +levation aeasurements per second is adeuuatc. 
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Section 6 
DOCKING MECHANISM DESIGN 

"0 assess the influence of the  docking mechanism design on the type and 

accuracy of the  data required, t he  description and mode of operation of 
ex is t ing  and projected docking mechanisms were retrieved from the l i t e r a -  
ture surrey genexmted ear l ie r .  
i n  Ref. 17, only the Gemini (Fig. 6-1), the Apollo (Fig. 6-2) and the 

Menasco (Fig. 6-3) systems were retained f o r  fu r the r  evaluation. 
vere added the androgynous internat ional  docking system (Fig. 6-4) develcped 

f o r  the Apollo-Soyuz docking experiment and the "Square Frane" csncept 
(Fig. 6-5) pro3ected for the !?@&e Tug. 

conaepts can be found i n  Ref. 20. 

O f  the l ist  of docking systems described 

To these 

Description of these more recent 

The requirements for an autoamtic docking system are formulated i r ,  3ef. 23 
also. They can be expressed as follows: 

The docking system shall be: 

1. Comprised of iaechanically mated, automatically operated pa r t s  which 
self-al ign and self-actuate on contact to provide a load carrying 
mechanical connection between chaser and target vehicles. 

2. Simple. 

3. Reliable. 

4. Itow i n  weight. 

5. Capable of independent release on command using _?over furnished by 
the chaser vehicle. 
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Mg. 6-1 Gemlnl Docking System 

Fig. 6-2 Apollo Docking System 
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- -- -- - 

-SPACE STATION 
\ /  

ACTIVE DOCKIHC SYSTEM 

Fig. 6-3 Menasco Dacking System 

PASSIVE DOCKING SYSTEH - 

.- 

ATTENUATORS- 

Fig. 6-4 International Docking System 
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6.  

7. 

8. 

9. 

10. 

11. 

Restored to a ready condition, on both the target and the  chaser 

vehicles, p r io r  to undocking o r  separation. 

F i t ted  with components so as to glve a c lear  f ield of view to 
optical ,  radar, o r  laser sensors on the chaser vehicle and re- 
flectors on the target vehicle during rendezvous and i n i t i a l  
capture. 

Equipped, of possible, with three latching points for the docking 
system design. 

than three is not s t ruc tura l ly  stable o r  e f f ic ien t . )  

Equipped with latch and contac t  points located near the vehicle 
mold l i n e  to minimize loads due to bending. 

Equipped wi th  automatic latching devices designed to carry loads 
during boost fmm earth to earth orb i t ,  as w e l l  as loads during 
lnter-orbi t  t ransfer  operations. 

Designed with st ructure  to absorb impact loads without shock 
absorbers o r  load attenuators, i f  possible. 

(More t h a n  three is unnecessarily redundant - less 

It is believed that the following requirements should be added: 

12, Design system to perform r o l l  indexing and establish a hard l i n e  
e l e c t r i c a l  connection. 

Such a capabi l i ty  w i l l  enable the chaser vehicle to ac t iva te  devices aboard 
a disabled target vehicle. 
as antennas and solar panes1 vi11 have to be retracted or jet tfsoned before 
any retrieval mission can be acccnnplished. 

r e q u i r e  a precise roll alignment of the spacecraft, 

It is envisioned that pmtruding components such 

A service mission would a l so  

I n  order to make a first attempt at  the evaluation of the  f ive  docking con- 

cepts mentioned, values ranging from 0 to 3 were at t r ibuted to each of the 
requirements . 
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LOCKHEED 

Not enough information was gathered to evaluate the docking systems on re- 

quirements 4 and 11. 
capture a t  first attempt harder to achieve and w i l l  bring a weight penalty 
to any concept designed w i t h o u t  impact attenuators. 

It  is believed t h a t  requirement 11 w i l l  make posi t ive 

Table 6-1 s h o w s  the r e su l t s  of the preliminary evaluation of t h e  f ive  dock- 

ing systems selected. 

Table 6-1 

Requirements Gemini Apollo Menasco Internat ional  Square Frarne 

1 3 3 3 3 3 
2 3 3 1 2 3 
3 3 2 1 2 1 

5 0 3 3 3 3 
6 3 3 3 3 3 
7 3 1 3 3 3 
8 3 3 3 3 2 

9 2 1 3 3 3 
10 3 3 3 3 2 

12 3 0 0 2 2 

TOTAL 26 22 23 27 25 

Rating based on evaluation of docking 3 = ycs 

system capabi l i ty  to meet requirements 2 = probably 

listed. 1 = doubtful 
o r n o  

6.2 F'IVE DOCKING CONCEPTS S'NDIED 

The following camnents on each docking system mryr help i n  a fur ther  appraisal 
of the five concepts. 
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(1) M i n i  Conceptf I n  r e l a t ion  to t h e  other  systems, t h i s  concept is 
losing p o i n t s  on requirements 5 and 9. 

The Gemini Agena Target Vehicle was supplylng a l l  the power required f o r  the 
actuat ion of the docking mechanism. 
performed by the chaser vehicle bu t  a l l  the docking ac t ive  la tching sad 
mooring operations w e r e  perforwd by the target vehicle. If this concept 
is considered f o r  automatic docking, the ac t ive  mechanism, ( i n  t h i s  cue, 
the in t e rna l  docking cone) should be in s t a l l ed  on the chase vehicle and the 

passive external cone be par t  of t h e  target vehicle. 
vould have the o ther  advantage to provide more space inside the i n t e r n a l  
docking cone to i n s t a l l  the optical ,  radar and laser sensors required for 
the automatic rendezvous and docking operations. 

The docking approach manewers were 

This new configuration 

If such a modification of the Gemini docking concept proves feasible, then 

the r a t i n g  to requirement 5, i n  a b l e  6-1 should be changed to 3, and the 

btal bectnues 29 instead of 26. 

---_I^_ ~- _ _ _  -_ 

A s  far as requirement 9 is concerned, the docking Latch receptacles are in-  
stalled i n  the external  docking cone which has a diameter of  approximstely 
81.28 cm (32 in.). If the t a r g e t  vehicles are i n  a diemeter range of 1.52 
lm 2.13 m ( 5  to 7 f t )  and the center of gravi ty  is located within the pennis- 
sible space to prevent jackknifing of the  spacecraft  on impact, the ex is t ing  

Gemini hardware could probably be used. 
and where their center  of gravl ty  are outside the pennissible l i m i t s ,  it I s  

conceivable that a larger diameter Gemini docking system could be designed 
to m e e t  the conditions of requirement 9. 

For vehicles having larger diameters 

(2) Apollo Concept: The reason this concept was s l i g h t l y  derated on require- 

ment 3, was that th rus t  has to be applied to the chaser vehicle follow- 
ing impact to achieve a successful capture. (Ref. 19) 

The fact t h a t  the probe head and drogue capture receptacle are on the  center  
l i n e  of the r e s 6 c t i v e  spacecraf't, i n s t a l l a t i o n  of the rendezvous and docking 
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sensors is made more d i f f i c u l t  and the i r  f ie ld  of view is restricted by the 

extended probe mechanism of this concept. 
ra t ing  on requirement 7. 

These are the reasons f o r  a l o w  

A l o w  ra t ing  on requirement 9, is due to the fact that  the f irst  impact load 

is reacted by the probe head which is on the center l i n e  of the chaser ve- 

hicle, and thus has a tendency to cause the vehicles to jackknife. 
docking mechanism must resist a greater bending moment to a l ign  the  vehicles 
after impact and capture. 

This 

No means to correct an angular misalignment i n  the roll axis during the 

docking o r  mooring operations resul ted in a l o w  r a t ing  for requirement 12. 

(3) Menasco Concept: This concept, with its latch hooks running up and 
dmm the radial movable anns, is not simple. 
conducted successfully on a ful l -scale  prototype mechanism (Ref .  17), 
it seems complicated and not as reliable as the other selected systems. 
It does not show any provision to al ign the two vehicles i n  the lpll 

axis. 

A l t h o u g h  tests have been 

The above remarks are the reasons for l o w  crstings on conditions 2, 3, and 12. 

(4)  International Concept: It is believed tha t  t h i s  system has  not been 

f l i gh t  tested yet and this is the reason it was s l i g h t l y  derated under 
the requirerPents 2 and 3. 
i n  the roll axis, it does not seem to be as accurate a8 in the Gemini 

Although it provides an angular alignment 

SyStem. 

(5) Square Frame Concept: 
the l i t e r a tu re  about this concept, an attempt was made a t  r a t ing  it 
against  the other four  better known systems. 
known models of this concept have been b u i l t  or tested, a l o w  r a t ing  

on reliabil i ty was given. 

Although not much information has been found i n  

Due to the f a c t  that no 
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b u t  it may not accommodate as large an angular misalignment i n  the roll 
axis. 
design. 
components was the reason for a lower ra t ing  on requirement 10. 

It is not  i n  the scope of this study to invest igate  such a change i n  
Iack of infomation about the s t ruc tu ra l  i n t eg r i ty  of the latching 

- 

A lower ra t ing  on requirement 12 has been given because it is believed t h a t  

t h i s  concept does not provide a rol l  indexing as accurate as i n  the Gemini 
system. 

Our evaluation study would not be complete without a comparison of the capa- 
bi l i t ies  of each docking system. 
G e m i n i ,  Apollo and the projected Space Tug could be found. 
Frame" concept is beliwed to be designed to the Space Tug Oocking specif i -  
cations. 
Table 6-2. 

To date only the specifications of the 

The "Square 

(Ref. 22). A comparison of these specif icat ions is shown i n  

Table 6-2 

Baseline 
Gemini A p o l l o  Space Tug 

Uni ts Ref. 18 Ref. 7 Ref. 22 
Centerline Miss ( f t )  (0 to 1.C) ( 0  to 1.0) ( 0  to 1.0) 
Distance m o t o  . 3 0 ~  0 to .3048 0 tc .3048 
Kiss Angle (0 to 10.0) (0 to 10.0) ( 0  tQ 5.0) 

rad 0 to .17b5 0 to .1745 0 t c  090725 
Iongitudinal ( f t/sec ) (1.5 max) (0.1 to 1.0) (0.1 tc 1.0) 

lateral Velocity ( f t/sec ) ( 0  to 0.5) (0 to 0.5) (0 t~ 0.30) 
Velocity m sec 

m/sec 
Ang?Jlar Velocity i n  (deg/sec 

Pitch, rad/sec (0 to 0.75) 
0 to .0130g 

0 to .01309 

0 to -1745 

Yaw, (0 to 0.75) 

Roll, (0 to 10.0) 

Combined 0 to -1745 (c to 1.0) (0 to 0.50) 
0 t4 00175 0 to .008725 
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6.2 I N F L ~ C E  OF DOCKING MECHANISM DESIGN 

Analysis of the specif icat ions i n  Table 6-2 shows t h a t  any of t h e  concepts 
would be sat isfactory fo r  t he  Space Tug, although Table 6-1 r a t e s  the  In te r -  
national system the  bes t .  

The specification tha t  influences the Space Tug the  grea tes t  i s  the center 

l i n e  m i s s  distance. Figure 6-6 shows the t o t a l  impulse required, fo r  an 
abort ,  with a 15.24 cm (6 i n )  and 30.48 cm (12 i n )  specif icat ion f o r  the 
center l ine miss distance. 
(2200 LBf-sec) f o r  15.24 cm t o  4092 N-sec (920 LBf-sec) f o r  30.48 cm allowance. 

"he t o t a l  impulse required drops from 9786 N-sec 

It can be concluded tha t  t o  minimize the  influence on the  Tug the  center l ine 
m i s s  distance should be made as large as pract icable  consistant with the dock- 
ing mechanism optimization. 
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ABORT BURN IMPULSE VS. DOCK!NrJ MECHANISM ERROR AiiaWKNCE 
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7.1 II!ITRODUCTION 

This study has shown tha t  a severe constraint  on the abort process is imposed 
by thruster impingement on the payload. 
control  of the  posit ion and velocity e r rors  normal t o  the docking axis are t h e  

other major drivers. 

Docking mechanism requirements and 

7.2 AUXILIARY PFtO~SIoIJ SYEEEM ( A B )  IMPINGEDEN" EFFECTS ON DOCKING 

A n  impingement study of t h e  APS thrusters  was made applicable t o  any payload 
shape. 
of two thrusters firing, which will be the  usual case, can be eas i ly  derived 
as the impingement i s  symmetrical. 

Figs. 7-1 through 7-8 are for one forward f i r i n g  thruster. The e f f ec t  

Fig. 7-9 through 7-16 are  f o r  thruster  f i r i n g  normal t o  the Tug X-axis. The 
impingement forces and torques a re  a function of the distance the  payload i s  

.from Tug s ta t ions  457 and the  payload are  exposed t o  the plumes. - 
~ -. 

- - -  - The forces and torques f o r  any payload shape may be estimated by. using-the - - 

overlay included with t h i s  report  over a su i tab le  scaled payload - - outboard - - - 

pro f i l e .  
t o  f ind the force on the  payload. 

t he  segment yielding the  torque. .Note t h a t  the pressures are symmetricd - 

about the v e r t i c a l  axis and t h a t  the force and torque from the  complementary 
thruster must be included. 

- -- 
The average segment surface pressure may be graphically integrated 

- 

The center of pressure i s  a t  centroid of - 

It is obvious from Fig. 7-8 tha t  even 1524 cm (600 i n )  from the payload the  
X-force for two th rus te rs  tending t o  push a 1270 cm (500 i n )  radius payload 
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away from the Tug is 171.3 newton (38.5 l b f )  which i s  highly undesirable. 
Fig. 7-17 shows the t o t a l  force and Torque on the payload as a function of 
the x-displacement f o r  a 1270 cm (500 i n )  radius and a 508 cm (200 i n )  radius 

payload. 
the payload while the torque peaks a t  609.6 cm (240 i n ) .  
radius payload is subjected t o  much l e s s  force, the force i s  s t i l l  6% of the 
1270 cm payload a t  zero displacement. 
load were perfectly symmetrical, t he  thrusts  equal, and the Tug posit ion 
exactly on the axis of the payload, an unlikely s i tuat ion.  

Note tha t  the x-force peaks when the tug is  215.9 cm (85 i n )  from 
While the 508 cm 

The & torque would cancel i f  the pay- 

For the same conditions as above, but f i r i n g  thrusters  normal t o  the X-axis 

the X-force i s  only 0.417 netwons (0.094 l b f )  a factor  of 410 times l e s s  than 
f o r  forward f i r i ng  thrusters  while the torque i s  203 times less. 

Figs. 7-18 and 7-19 show the torques and forces for a 1270 cm and 508 cm 
radius payloads. 
ment beyond 762 cm (300 i n ) .  

Note from Fig. 7-19 tha t  there are no e f fec ts  of impinge- 

This suggests tha t  the  abort maneuver should be made by f i r i n g  the thrusters  
normal t o  Tug X-axis. 

The APS impingement e f fec ts  on the Tug i t s e l f  were not studies,  however it can 
be concluded that  the fore-aft  th rus te r  should be canted upward t o  reduce the 
impingement torques on the Tug itself and reduce the high stagnation tempera- 

tures  on the vehicle. 

7.2 ABORT 

7.2.1 Introduction 

Abort s t ra tegy and implementation a re  very important. A n  abort, which can 
occur f o r  many reasons, has a severe impact on the mission because of time 
and t o t a l  impulse requirements. The fundamental tenets  for  abort would be: 
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(I) Tug and payload safety must not be compromised. 

(2) m-e payload att i tude mrt; not; be dest&?il izcd.  

(3) 

(4) 

The additional t o t a l  impulse required must be minimized. 

The time required t o  redock must also 'be minimized. 

The following analysis assumes: 

-Z axis t h m t e r s  f o r  the  abort burn, tha t  is, the tug clears  the 
underside of the payload. 

The payload docking mechanism is i n  the center of the payload and 
requires 508 cm clearance below the docking axis. 

The payload cannot control more than 13.6 cm-n (1.2 in-lbf) torque. 

The Tug's posit ion and velocity errors  normal t o  the docking axis 
are independent and normal, assuming 10.8 cm and .004 m/sec 

(3-Sigma) 

The !hg i s  as defined in Section 2. 

The coordinates f o r  the abort problems are shown i n  Fig. 7-20. 

The docking axis miss distance .a52 m (.5 f't) and docking veloci ty  
= .152 m/sec (.5 f t /sec) .  

Mininnun allowable range t o  payload 1.829 m (6 f t  ) . 

I n  general, the smaller the t i m e  a l lo t ted  f o r  a kneuver  o r  phase the greater  

the t o t a l  impulse consumed will be. 

7.2.2 Selection of the Stand O f f  Point (SOP) and Docking Velocity ( D O C K )  

The f irst  s tep is t o  determine the minimum abort range required. 
docking mechanism normal ( t o  the  docking axis) e r ror  and the normal veloci ty  

Given the 
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(+sigma) allocated a t  the SOP, Fig. 7-21 can be used t o  determine the minimum 
abort range. 

the minimum abort range is 4.176 m (13.7 f t )  . 
As an example, using the parameters i n  Section 2 and Para. 7.2.1, 

The m i n i m  abort distance should be selected t o  minimize the  docking veloci ty  
while not violat ing other constraints.  
o r  (.5 f t / s e c )  has been selected.  

Here the docking veloci ty  .152 m/sec 

The next s tep  i s  t o  determine the abort burn time from Fig'. 7-22. 

t r a t ion  uses 508 cm as the required clearance below the  docking mechanism axis. 
Thus, the abort burn time and t o t a l  impulse can be extrapolated as 10.8 sec or  
4804 N-sec (1080 lbf-sec) . 

The i l l u s -  

The minimum range can be checked with Fig. 7-23. 
(6 f t )  i s  safe  by .21 m (.7 f t ) .  

In  t h i s  case, the  1.829 m 

The l a s t  check, payload torque, i s  made using Fig. 7-24. 
using the  abort burn time. 
velocity-minimum abort range curve a l i n e  i s  drawn horizontally t o  in te rsec t  
the  Y torque curve and the magnitude of the Y-torque i s  read from the  abscissa. 
For the example it is 11.98 cm-n (1.06 in-Lbf); less than the specif icat ion of 

13.56 cm-n. 

The graph is  entered 
A t  the  point t h i s  time in te rsec ts  the docking 

For t h i s  case the SOP chosen would be 4.176m and the docking veloci ty  .152m/sec. 

7.2.3 Abort Impulse Calculation 

The t o t a l  impulse required f o r  abort t h a t  is implemented i n  LOCDOK is: 

8 (Yc + 7.33) 
a ITA = 50 [ e - \i 
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l -  

= ('2 min + 23.3 + Pw) 
'Retro 

safety - Yc + Y V - 
tT 

RY 

(7.3) 

(7.4) 

where : 

. = Total impulse required f o r  abort and redocking It 

Ra = Standoff point distance 

YC = Clearance required below docking mechanism axis 

= Clearance below Yc required fo r  antenna, e tc .  'safety 

a = Acceleration o f  Tug thrust/vehicle mass 

= Docking veloci ty  'dock 

= Distance frompayload on the docking axis t o  start f i n a l  
docking approach R2 min 

= time allocated t o  re turn t o  R2 min from below payload after 
abort 

= Payload width 

V = Velocity along the Y-axis 
RY 

= Total impulse required t o  reach the SOP from R2 m i n  ITOD 

= I n i t i a l  abort burn t o t a l  impulse ITA 
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= Velocity along the  docking axis  required t o  reach R 
2 min 'Retro a f t e r  abort 

Equation 7.1 accounts fo r  a l l  the  t o t a l  impulse needed t o  abort ,  re turn t o  a 

point on the docking axis f o r  another f i n a l  approach, and re turn  t o  t h e  SOP. 

It does not include the  t o t a l  impulse needed by the  a t t i t ude  control  system. 

To recognize the fac tors  t ha t  contribute the  grea tes t  amount t o  the abort 
impulse required, the following typica l  values i n  addition t o  those specified 
previously a re  assumed: 

'OD = .152 m/sec (.5 f t / s ec )  

= 66723.3 N-sec (15,000 lbf-sec) from LOCDOK simulation ITOD 

pw = 10.16 m (33.34 f t )  

= 304.8 (1000 ft) R2 min 

'safety = 22.63 m (74.25 f t )  

= 3600 sec 

MASS = 14593.9 kg (1000 slugs) 

From Equation 7.1 

It = 2160 + 15000 + 1000 (2 (.0253 + .5) + .2935) 

= 2160 + 15000 + 1399.5 .It 
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It immediateiy becomes obvious that  the  most impulse i s  used by the redocking 

run down the docking axis. 
quired t o  regain R2 ~~n the l ea s t .  
impulse i s  inversely proportional to the t i m e  a l l o t t ed  i n  arriving a t  R 

and poten t ia l ly  it could become very large if the time a l lo t t ed  i s  short .  

The abort impulse is next, with the impulse re- 
Note, however, f r o m  Equation 7.3 tha t  t h i s  

2 min 

7.2.4 Abort Time Calculation 

The t i m e  required tA t o  redock the tug is: 

= tC + tCB + tI + SOD + tOD tA 

tC = Ra/VDOCK 

'Retro2 
+ 

'DOCK2 
2a Pw + 23.3 + - - 

vDOCK 

%OD = 'OD/" 

- /VOD 
tOD - R2min 

where : 

= Velocity down the  docking axis &om R2 min t o  Ra 'OD 

From Equation 7.5: 

= 27.4 + 116.6 + 3600 + 5 + 2000 tA 

= 5749 sec, 1.6 hrs  tA 
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More than half  the t i m e  required for  redocking i s  used i n  re-establishing the 

Tug's posi t ion for a run down the docking axis.  

While t h i s  time can be shortened, it would increase the  t o t a l  impulse needed 

fo r  the abort. 

The second largest  increment i s  used for  the run down the  docking exis. The 

veloci ty  VOD selected was .152 m/sec (.5 f t / sec)  t o  save the t o t a l  impulse 
required t o  accelerate t o  VOD and deaccelerate t o  M O C K .  
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Section 8 
LOCDOK SIMULATIm AND USER'S MANUAL 

8.1 ~ O D U C T I O N  

LOCWK is a d i g i t a l  simulation of a space vehicle docking with a payload. 
This simulation was abstracted and modified f r o m  a much la rger  simulation, 
AVION. I n  constructing the  program ce r t a in  features ,  not required by the 
study were not included but  the interfaces t o  permit incorporation i n  the 
future  were retained. 
of the payload, and maintenance of fixed posit ion.  

Some of  these features  are  rendezvous, circumnavigation 

8.2 LOCDOK SIMULATION 

The LOCDOK simulation i s  wri t ten in Fortran IV fo r  t h e  Univac 1108 com- 
puter.  

segmented. The program is modularized, containing 81 subroutines. The 
simulation may be run i n  English or  i n  the Internat ional  System of  Units. 

It requires 62,782 decimal words of core storage and i s  not 

The program. input data is  preset  t o  tha t  only variables t h a t  require change 

f o r  a pa r t i cu la r  run need be inputed. 
multiple cases may be run without resubmission on the job. 

The input i s  designed so that  

The program has a ve r sa t i l e  SC4020 plot  capabi l i ty  which has the following 

features:  
allow rep lo t t ing  at a later date without re-running the e n t i r e  simulation. 

In  addition, there  is  the capabili ty t o  perform mathematical manipulation 

of the variables. 

multiplied; and of course one of the var iables  maybe a constant. 
program automatically scales  a l l  variables so as t o  f i l l  the e n t i r e  plot .  
If there  a re  several  dependent variables,  the  program automatically scales  
them so t h a t  adequate resolution i s  obtained, and then annotates each 

variable with i t s  t i t l e  and the scale factor ,  see Figs. 8-1 t o  8-4. 

A l l  plo t t ing  data can be stored on computer magnetic tape t o  

These variables m a y  be added, subtracted, divided, or  

The 
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Fig. 8-5 through 8-U are  sample pages of the output. 
labeled i n  Eng l i sh  together with the  important Fortran names. 
of the output variables are self-evident as can be seen from the  output. 

Figures 8-5 and 8-6 are sample page outputs i n  metric un i t s  f o r  perfect  

a t t i t ude  control. Figures 8-7 and 8-6 are  similar except i n  English uni ts .  
Figures 8-9 and 8-10 i l l u s t r a t e  t h e  difference i n  output from the  runs w i t h  

detailed a t t i t ude  ccntrol.  
Additional LOCDOK d e t a i l s  may be found i n  the User's Manual, LMSC/D424229, 
which i s  submitted as a separate volume with t h i s  report .  

A l l  variables are 

Definitions 

8.2 USER'S MANUAL 

The User's Manual, MSC/D424229, i s  published separate from t h i s  volume 
fo r  ease of use. 
information necessary t o  run the program can be found i n  the User's 

Manual, although occasional reference t o  the Final Report may be required 
a t  f irst  . 

Once an operator becomes familiar with LOCDOK, a l l  

All the input variables required t o  run the program are i n  the  Input 
Dictionary Section of  the  User's Manual. 
names of the input var iables ,  def ini t ion of the  variables, together w i t h  

l imitat ions and notes, are a lso i n  the  Dictionary. 

Preset data  values, Fortran 
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Section 9 

CONCLUS IONS 

9.1 DOCKING CONTROL STRATEGIES 

A posi t ion update (autonomous navigation) could be advantageous after the 

rendezvous in jec t ion  burn if the  autonomy leve l  selected f o r  the Tug i s  I or  
11. 

Strategies  are  required i n  the event the  Tug does not acquire the payload 
during the  acquisit ion phase, o r  the dockirig a i d  f o r  the f i n a l  docking 
phase. 

Impingement could be a very severe problem during docking o r  abort. 
forward thrus te r  should be  disabled far frm the  Tug. The a t t i t ude  control 
system logic  should be mechanized so t ha t  no forward th rus te r  will be f i r e d  
i n  the payload vicini ty .  The affect  on a t t i t ude  accuracy and r a t e  and t o t a l  
impulse should be studied t o  assess the impact of t h i s  mechanization includ- 
ing the cross-products of i n e r t i a  and center of  gravi ty  of fse t s  and t rave l .  
During the coast from the  standoff point t o  latch-up a l l  thrusters should be 

disabled except i n  the case of an emergency abort. 

only thruster normal t o  the  x-axis should be used. 
t o  inspect  t he  payload docking mechanism t o  see that  it i s  not obstructed 
o r  damaged. 

The APS 

If an abort i s  required 

A provision should be made 
- 

Low-G propellant slosh could be avery serious problem f o r  the Tug. 

it could have an even grea te r  e f fec t  on the  vehicle then impingement. 

of t h i s  problem i s  strongly recommended. 

Potent ia l ly  
Analysis 

A s i x  by six K a h n  sequential f i l t e r  f o r  the docking sensor data i s  recommen- 
ded. 
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9.2 DOCKING SENSOR REQUIREMENTS 

A posit ion update capabi l i ty  would reduce the  f i e l d  of view requirements. 
For the specified rendezvous inject ion accuracies a minimum 143.72 KM 

( 7 7 . 6 ~ ~ )  acquisition range i s  recmended.  

9.3 DOCKING MECHANISM DESIGN 

The androgynous international docking mechanism seem sui table  fo r  the  Space 
Tug. 
possible. 

The center-line m i s s  distance specification should be made as large as 

9.4 ABORT 

If an abort i s  required only thrus te r  perpendicular t o  the  vehicle x-axis 
should b e  f i red .  Additional impingement studies are necessary. 

For a given payload configuration the  driving parameters on the  t o t a l  impulse 
used f o r  the  abort are: 

The docking mechanism posit ion e r ror  allowance normal t o  

t h e  docking axis  and the  maximum latch-up velocity. 

The t ranslat ional  control capabi l i ty  t o  reduce t h e  velocity 
normal t o  t h e  docking axis t o  a small value. 

The time allowed f o r  the  redocking attempt. 

The time available t o  c lear  the payload a f te r  t h e  i n i t i a -  
t ion  o f  the  abort burn. This time i s  simply the  distance 
from the payload a t  the  abort time divided by the docking 
velocity (VDOCK) . 

The run down the docking axis  t o  redock consumes the  most APS t o t a l  impulse 

f o r  an abort. 
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Section 10 

SUGGESTED FuRllIER SPVDIES 

Ihe suggested studies in this section w a u l d  provide needed analysis t o  fbr- 

ther define the requirements and configuraficm for the Space Tug and to  pro- 
vide support t o  the Aero-Astrionlcs Laboratory. 

(1) 

LOCDOK is a fairly complex simulation. PrevZous experience has shown that a 
minimum of two week8 of instruction and customer usage, a t  MSFt, is required 
t o  proficiently u t i l i ze  a cauplex simulation. 

Training at MSFC i n  the U s e  of UXDOK 

The training w i l l  comprise lectures, 
nel, and aid i n  debueging problapps. 

(2) - Modif lcstlon 

The documentation provided under the 

to permit experienced progmmers to 
period of use, desirable changes and 

supemlsion of runs by customer person- 

present contract is not detailed enough 
modif'y fx)(=DoIc. Invariably, after a 
additions become a d & .  The necessary 

programing support can be provided t o  the Aero-Astricmics Laboratory. 

(3) I n c o r p O ~ t i ~  Of LOU-G Prope l l an t  Slosh Into the Space Tug Automatic 
Dock- Simlat ion 

Lm-G propellant slouh could have a very large impact 011 the Space Tug Mis- 
sion. Propellant slosh could affect the misrion capability spd require 
redesign of the Tug subsystans. Lockheed Missiles t !~  Space Company has been 
involved wlth low-G propellant slosh and prapellant 

many years. I n  addition t o  extensive analytical efforts, Lockheed has 
written a technical brief, Ref. 15, that d e t a i l s  the suggested effort .  

systems for 
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(4) Control System Modification 

The re su l t s  of the impingement study have sham that it is  undesirable t o  
f ire the forward thrusters  i n  the v ic in i ty  of the payload. 

a t t i t ude  control simulation should be modified t o  simulate and analyze the 
ef fec t  of this mechanization on the Tug's a t t i t ude  control  t o t a l  impulse, 
pointing accuracy, and limit cycle rate. 

LOCDOK's detailed 

(5) Autonomous Navigation 

For higher autonomy levels,  the Space Tug will probably require  an autoncrnous 
n a v i s t i o n  capability. 
requirements for  the docking sensor. 

A posit ion update capabi l i ty  will reduce the RJV 

Table 10-1 shows potent ia l  concepts f o r  autoncmcm navigation. It is  assumed 
that stellar i n e r t i a l  reference, computing, and t i m e  refvence capabi l i ty  are 
available fo r  on-board navi&ion. Specifically, space vehicle navigation i s  

perfonned with all posit ions and veloci ty  conpatations done on board the 
vehicle. 
each of these approaches for purposes of measuring accelerations due t o  tank 
venting and other unscheduled vehicle perturbations. 

It is  further assumed that a low-g acceleraneter is  considered i n  

Certain of these sensor 
types (e.g., horizon sensor) can be considered 
and f o r  backup. A block diagram for a typ ica l  
shown i n  Fig. 10-1. Since three posit ions and 
must be corrected w i t h  perhaps only one o r  two 
is  just one messurement), the select ion of how 

f o r  use during i n i t i a l i z a t i o n  
orbit navigational system is 
three veloci ty  coordinates 
measurements (range, f o r  example, 
much correction t o  make t o  each 

state must follow an orderly process i f  the solut ion is t o  converge. 
man filter has the algorithms for the orderly "sequential f i l t e r i n g "  of the 
measurements. Table 10-2 contains excerpts of Kalme,n filter, l i n e a r  system, 
and noise equations that would hsve t o  be studied and huplemented f o r  autono- 
mour navimtian. 

The Kal- 

Anather suggested study would determine the optimum Kaban filter f o r  Space 

h;lg. 
as a data f i l t e r  for the docking sensor. 

!be study would include KalraRn filter compatlbillty and poesible use 
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I ( 6 )  Imp ingement Studies 

A aigW’lcsat study would be the effects  of impingement on sane typical 
payloads. Payloads with solar panels, antema, and other asymmetrical shapes 
should be examined. 
which give r i s e  t o  torques end hi& temperatures on the skin should be 
analyzed. 

In addition, the impingement effects on the Tbg itself 

lhis study would optimize, wlthln the constraints specified by 
the customer, the cant angle of the APS thn;lsters parallel to  the vehicle 

I x-alds 

Section 2 allocates 411.9 Kg (906.8 lbm) of APS propellants a t  the start of 
docking. ‘Ibis allocation is marginal for a n o d  docking and would not be 
sufficient if an abort or non-nominal trajectory occurred. It is suggested 
that a study to optimize the tats1 APS impulse be made and the allocation of 
propellant be ma8sessed. 
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